首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1824篇
  免费   799篇
  国内免费   235篇
化学   833篇
晶体学   27篇
力学   21篇
综合类   9篇
数学   7篇
物理学   1961篇
  2024年   2篇
  2023年   16篇
  2022年   59篇
  2021年   86篇
  2020年   81篇
  2019年   69篇
  2018年   83篇
  2017年   91篇
  2016年   117篇
  2015年   108篇
  2014年   155篇
  2013年   178篇
  2012年   202篇
  2011年   178篇
  2010年   151篇
  2009年   127篇
  2008年   163篇
  2007年   154篇
  2006年   128篇
  2005年   107篇
  2004年   97篇
  2003年   77篇
  2002年   76篇
  2001年   62篇
  2000年   55篇
  1999年   40篇
  1998年   35篇
  1997年   26篇
  1996年   30篇
  1995年   17篇
  1994年   24篇
  1993年   6篇
  1992年   8篇
  1991年   12篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有2858条查询结果,搜索用时 46 毫秒
1.
Near-infrared(NIR) fluorescent materials with high photoluminescent quantum yields(PLQYs) have wide application prospects. Therefore, we design and synthesize a D-A type NIR organic molecule, TPATHCNE, in which triphenylamine and thiophene are utilized as the donors and fumaronitrile is applied as the acceptor. We systematically investigate its molecular structure and photophysical property. TPATHCNE shows high Tgof 110℃ and Td of 385℃ and displays an aggregation-induced emission(AIE) property. A narrow optical bandgap of 1.65 eV is obtained. The non-doped film of TPATHCNE exhibits a high PLQY of 40.3% with an emission peak at 732 nm, which is among the best values of NIR emitters. When TPATHCNE is applied in organic light-emitting diode(OLED), the electroluminescent peak is located at 716 nm with a maximum external quantum efficiency of 0.83%. With the potential in cell imaging, the polystyrene maleic anhydride(PMSA) modified TPATHCNE nanoparticles(NPs) emit strong fluorescence when labeling HeLa cancer cells, suggesting that TPATHCNE can be used as a fluorescent carrier for specific staining or drug delivery for cellular imaging. TPATHCNE NPs fabricated by bovine serum protein(BSA) are cultivated with mononuclear yeast cells, and the intense intracellular red fluorescence indicates that it can be adopted as a specific stain for imaging.  相似文献   
2.
Two efficient thermally activated delayed fluorescent (TADF) emitters were developed by utilizing CN-modified imidazopyridine as an acceptor unit. The CN-modified imidazopyridine acceptor was combined with either an acridine donor or a phenoxazine donor through a phenyl linker to produce two TADF emitters, Ac-CNImPy and PXZ-CNImPy. The acridine-based Ac-CNImPy emitter exhibited sky-blue emission with a CIE coordinate of (0.18, 0.38), whereas the phenoxazine-donor-based PXZ-CNImPy showed greenish-yellow emission with a CIE coordinate of (0.32, 0.58). A high photoluminescence quantum yield of 80 % was observed for the PXZ-CNImPy emitter compared with 40 % for the Ac-CNImPy emitter. Organic light-emitting diodes based on the PXZ-CNImPy emitter demonstrated high external quantum efficiency of 17.0 %. Hence, the CN-modified imidazopyridine unit can be considered as a useful electron acceptor for the future design of highly efficient TADF emitters.  相似文献   
3.
Device grade quantum dots (QDs) require QDs ensembles to retain their original superior optical properties as in solution. QDs with thick shells are proven effective in suppressing the inter-dot interaction and preserving the emission properties for QDs solids. However, lattice strain–induced defects may form as the shell grows thicker, resulting in a notable photoluminescence quenching. Herein, a well-type CdxZn1−xS/CdSe/CdyZn1−yS QDs is proposed, where ternary alloys CdZnS are adopted to match the lattice parameter of intermediate CdSe by separately adjusting the x and y parameters. The resultant thick-shell Cd0.5Zn0.5S/CdSe/Cd0.73Zn0.27S QDs reveal nonblinking properties with a high PL QY of 99% in solution and 87% in film. The optimized quantum dot light-emitting diodes (QLEDs) exhibit a luminance of 31547.5 cd m−2 at the external quantum efficiency maximum of 21.2% under a bias of 4.0 V. The shell thickness shows great impact on the degradation of the devices. The T50 lifetime of the QLEDs with 11.2 nm QDs reaches 251 493 h, which is much higher than that of 6.5 and 8.4 nm QDs counterparts. The performances of the well-type thick-shell QLEDs are comparable to state-of-the-art devices, suggesting that this type of QDs is a promising candidate for efficient optoelectronic devices.  相似文献   
4.
为了提升溶液法制备的蓝色荧光有机发光二极管(OLEDs)的效率,采用了基于热激活延迟发光(TADF)的激基复合物作为主体材料。TADF激基复合物主体可以利用反向系间窜跃上转换形成单线态激子并将能量传递到客体,从而可以同时利用发光层中的三线态激子和单线态激子,以提升蓝色荧光器件的效率。选择蓝色荧光材料1-4-Di-[4-(N,N-diphenyl)amino]styryl-benzene(DSA-ph)作为客体发光材料,4,4′,4″-T-ris(carbazol-9-yl)triphenylamine(TCTA)掺杂1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)(TPBi)作为热激活延迟荧光激基复合物主体,通过溶液法制备了蓝色荧光OLEDs。通过测试TCTA,TPBi以及TCTA掺杂TPBi的光致发光光谱发现,与TCTA和TPBi相比,TCTA掺杂TPBi的光致发光谱(PL)发生了明显的红移(峰值波长变为437 nm),而且光谱变宽,证明了TCTA∶TPBi激基复合物的形成。通过对于DSA-ph掺杂激基复合物主体的薄膜与DSA-ph掺杂poly(methyl methacrylate)(PMMA)的薄膜进行PL测试发现,两者发光峰相同,都是来自DSA-ph的发光,说明激基复合物主体将能量传递到了DSA-ph;DSA-ph的吸收光谱与激基复合物主体的PL光谱存在很大重叠,说明激基复合物主体与DSA-ph的能量传递非常有效;通过对激基复合物主体掺杂不同浓度客体的薄膜进行瞬态PL衰减测试发现,与纯DSA-ph的寿命相比,DSA-ph掺杂激基复合物主体之后其寿命会延长,纯DSA-ph的寿命只有1.19 ns,DSA-ph掺杂激基复合物主体的荧光衰减曲线与激基复合物主体的荧光衰减曲线相似,这进一步证明了激基复合物主体将能量传递到了DSA-ph。研究了主体引入以及DSA-ph掺杂浓度对器件性能的影响。对于器件的亮度、电流密度、电压、电流效率、电致发光光谱等参数进行了测试,与不采用激基复合物主体的器件相比,采用激基复合物主体的器件性能明显改善,在DSA-ph掺杂浓度为10%时,器件亮度从2133.6 cd·m^-2提升到了3597.6 cd·m^-2,器件效率从1.44 cd·A-1提升到了3.15 cd·A-1,发光峰只有来自DSA-ph的发光。采用TADF激基复合物主体的方法有潜力实现溶液法制备的高效蓝色荧光OLEDs。  相似文献   
5.
Iridium complexes bearing chelating cyclometalates are popular choices as dopant emitters in the fabrication of organic light-emitting diodes (OLEDs). In this contribution, we report a series of blue-emitting, bis-tridentate IrIII complexes bearing chelates with two fused five-six-membered metallacycles, which are in sharp contrast to the traditional designs of tridentate chelates that form the alternative, fused five-five metallacycles. Five IrIII complexes, Px-21 – 23 , Cz-4 , and Cz-5 , have been synthesized that contain a coordinated dicarbene pincer chelate incorporating a methylene spacer and a dianionic chromophoric chelate possessing either a phenoxy or carbazolyl appendage to tune the coordination arrangement. All these tridentate chelates afford peripheral ligand–metal–ligand bite angles of 166–170°, which are larger than the typical bite angle of 153–155° observed for their five-five-coordinated tridentate counterparts, thereby leading to reduced geometrical distortion in the octahedral frameworks. Photophysical measurements and TD-DFT studies verified the inherent transition characteristics that give rise to high emission efficiency, and photodegradation experiments confirmed the improved stability in comparison with the benchmark fac-[Ir(ppy)3] in degassed toluene at room temperature. Phosphorescent OLED devices were also fabricated, among which the carbazolyl-functionalized emitter Cz-5 exhibited the best performance among all the studied bis-tridentate phosphors, showing a maximum external quantum efficiency (EQEmax) of 18.7 % and CIEx,y coordinates of (0.145, 0.218), with a slightly reduced EQE of 13.7 % at 100 cd m−2 due to efficiency roll-off.  相似文献   
6.
Germanium dioxide (GeO2) aqueous solutions are facilely prepared and the corresponding anode buffer layers (ABLs) with solution process are demonstrated. Atomic force microscopy, X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy measurements show that solution-processed GeO2 behaves superior film morphology and enhanced work function. Using GeO2 as ABL of organic light-emitting diodes (OLEDs), the visible device with tris(8-hydroxy-quinolinato)aluminium as emitter gives maximum luminous efficiency of 6.5 cd/A and power efficiency of 3.5 lm/W, the ultraviolet device with 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole as emitter exhibits short-wavelength emission with peak of 376 nm, full-width at half-maximum of 42 nm, maximum radiance of 3.36 mW/cm2 and external quantum efficiency of 1.5%. The performances are almost comparable to the counterparts with poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) as ABL. The current, impedance, phase and capacitance as a function of voltage characteristics elucidate that the GeO2 ABL formed from appropriate concentration of GeO2 aqueous solution favors hole injection enhancement and accordingly promoting device performance.  相似文献   
7.
In organic light-emitting diodes (OLEDs) based on materials that show thermally activated delayed fluorescence (TADF), the internal quantum efficiency of 100 % can be obtained without using phosphorescence-based organometallics that contain rare metals. Therefore, with TADF-based emitters, it is possible to fabricate high-performing OLEDs at a lower cost. However, compared with fluorescence- and phosphorescence-based OLEDs, an understanding of degradation mechanisms in TADF-based OLEDs is still insufficient for future commercialization. In particular, it is widely recognized that the development of electron transport materials is crucial for improving OLED characteristics, especially driving voltages and operational durability. In this study, it was demonstrated that the operational durability of TADF-based OLEDs was greatly improved by introducing a triazine-based material of 2,4,6-tris(1,1′-biphenyl-4-yl)-[1,3,5]triazine (pT2T) as a hole-blocking layer (HBL) compared with a conventional HBL material of 2,4,6-tris(biphenyl-3-yl)-[1,3,5]triazine (T2T). Several experiments were carried out to make the reasons of the improved durability clearer, and attributed the improved durability to the shift of a carrier recombination zone from the emitting layer/HBL interface and the suppressed formation of excited-state quenchers in the pT2T HBL, because of the higher electron mobility of pT2T and the better stability of its radical anion state.  相似文献   
8.
Benzofurocarbazole moieties are commonly used donor structures in the design of thermally activated delayed fluorescence (TADF) emitters. However, only 5 H-benzofuro[3,2-c]carbazole (34BFCz) has been reported and, to the best of our knowledge, no other benzofurocarbazole derivatives have been covered in the literature. In the present study, two further benzofurocarbazole moieties, 12 H-benzofuro[3,2-a]carbazole (12BFCz) and 7 H-benzofuro[2,3-b]carbazole (23BFCz), have been synthesized to investigate the effect of the donor structure on the photophysics and device parameters of TADF emitters. Two benzofurocarbazole-derived TADF emitters, 12-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-12 H-benzofuro[3,2-a]carbazole (o12BFCzTrz) and 7-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-7 H-benzofuro[2,3-b]carbazole (o23BFCzTrz), have been compared with 5-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-5 H-benzofuro[3,2-c]carbazole (oBFCzTrz). The benzofurocarbazole donor structure governs the TADF characteristics, such as charge-transfer property and emission color. The 12BFCz donor has proved to be effective in blue-shifting the emission color, and 34BFCz has proven useful for improving the external quantum efficiency (EQE). The 12BFCz-derived o12BFCzTrz showed blue-shifted color coordinates of (0.159, 0.288), compared to (0.178, 0388) for o23BFCzTrz and (0.169, 0.341) for oBFCzTrz. The 34BFCz-derived oBFCzTrz exhibited an EQE of 22.9 %, compared to 19.2 % for o12BFCzTrz and 21.1 % for o23BFCzTrz.  相似文献   
9.
A series of monodisperse six-armed conjugated starbursts ( Tr1F , Tr2F , and Tr3F ) containing a truxene core and multibranched oligofluorene bridges capped with diphenylamine (DPA) units has been designed, synthesized, and investigated as robust gain media for organic semiconductor lasers (OSLs). The influence of electron-rich DPA end groups on their optoelectronic characteristics has been discussed at length. DPA cappers effectively raise HOMO levels of the starbursts, thus enhancing the hole injection and transport ability. Solution-processed electroluminescence devices based on the resulting six-armed starbursts exhibited efficient deep-blue electroluminescence with clear reduced turn-on voltages (3.2–3.5 V). Moreover, the resulting six-armed molecules showed stabilized electroluminescence and amplified spontaneous emission with low thresholds (27.4–63.9 nJ pulse−1), high net gain coefficients (80.1–101.3 cm−1), and small optical loss (2.6–4.4 cm−1). Distributed feedback OSLs made from Tr3F exhibited a low lasing threshold of 0.31 kW cm−2 (at 465 nm). The results suggest that the construction of truxene-centered six-armed conjugated starbursts with the incorporation of DPA units can effectively enhance EL properties by precisely regulating the HOMO energy levels, and further optimizing their optical gain properties.  相似文献   
10.
Inorganic cesium lead halide perovskite nanocrystals are candidates for lighting and display materials due to their outstanding optoelectronic properties. However, the dissolution issue of perovskite nanocrystals in polar solvents remains a challenge for practical applications. Herein, we present a newly designed one-step spin-coating strategy to prepare a novel multicolor-tunable CsPbX3 (X=Cl, Br, I) nanocrystal film, where the CsPbX3 precursor solution was formed by dissolving PbO, Cs2CO3, and CH3NH3X into the ionic liquid n-butylammonium butyrate. The as-designed CsPbX3 nanocrystal films show high color purity with a narrow emission width. Also, the blue CsPb(Cl/Br)3 film demonstrates an absolute photoluminescence quantum yields (PLQY) of 15.6 %, which is higher than 11.7 % of green CsPbBr3 and 8.3 % of red CsPb(Br/I)3 film. This study develops an effective approach to preparing CsPbX3 nanocrystal thin films, opening a new avenue to design perovskite nanocrystals-based devices for lighting and display applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号